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Commutative Asymptotic Limit of a Quasi-SU(2) 
Formulation of General Relativity 
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The notion of local quasi-gauge bundle structure is introduced. We show that 
general relativity can be recast in a local quasi-SU(2)-bundle framework. In the 
limit of weak asymptotic gravitational field, this geometrical setup gives rise to 
spin-2 tensor fields sourcing global charges. If such charges are available, it is 
shown that the asymptotic geometrical framework is that of a U(1) gauge bundle 
over S2, the commutative geometry of the (Dirac) magnetic monopole. 

1. INTRODUCTION 

In this paper, we want to shed light on the U(1)x SU(2) aspects of 
the gravitational interaction. This is an important matter for a better under- 
standing of the unification of interactions of various strengths and ranges. 

General relativity will be recast with the help of new spinor variables: 
canonically conjugate SU(2) Lie-algebra-valued one-forms. These variables 
suffice, and are more elegant for an initial value formulation of the theory. 
There consequently arises a noncommutative [SU(2)] setup which is avail- 
able in the usual nonlinear regime. If the asymptotic behavior of this setup 
is considered under assumptions of weak gravitational coupling, the above 
SU(2) variables give rise to U(1) variables and to the commutative geometry 
of the Dirac monopole provided magnetic (gravitational) charges are 
allowed not to vanish. The commutative U(1) geometry thus turns out to 
be an asymptote (at null infinity and in an appropriate sense) of the 
noncommutative SU(2) geometry. If the asymptotic behavior is allowed in 
a region of nonlinear coupling, which is connected to null infinity, an 
SU(2) x U(1) quasilocal bundle geometry sets in, which encompasses the 
two regimes (the spacelike and the null-like) in which gravity can be 
investigated, where the SU(2) geometry relates to the spacelike regime and 
the U(1) geometry to the null-like regime. 

~Drpartement de Mathrmatiques, Universit6 Blaise Pascal, 63177 Aubiere Cedex, France. 

1015 

0020.7748/92/0600-1015506.50/0 �9 1992 Plenum Publishing Corporation 



1016 Magnon 

These Maxwellian aspects of  the asymptotic null regime and SU(2) 
aspects of  the spacelike regime (provided nonlinearities are present) bring 
some clarity to the various facets of  the gravitational interaction and, we 
hope, could be of further use in the understanding of  the unification of  this 
interaction with others. 

2. LOCAL QUASI-GAUGE BUNDLE STRUCTURE 

We first introduce the "deformat ion"  of  groups of  transformations into 
quasi groups. Isometry Lie groups will serve as an illustration. 

Let us consider the case of isometry Lie algebras on a space-time 
manifold (M, gab). Since a Killing vector field (KVF) C ~ can be characterized 
by its Killing data at a point p: (~a, ~ab = Va~b)/p, the commutator [~, r/] ~ = 
Cpaq~P~ q of  two KVFs ~a and ~7 a is also characterized by its Killing data: 

( ~mT] a m __ 71 i n c a  ~m Tlmb __ '17 m Cmb -- Rmnab~mT~ n)p (1)  

Clearly, the structure constants Cpq a of the Killing Lie algebra are completely 
determined by g,~b/P and R,,bca/p. This suggests that we introduce at p the 
n(n + 1)/2-dimensional real vector space V e of  pairs (C a, Fab), where C a is 
a vector and Fab a skew-symmetric tensor, with the above bracket (1). The 
bracket operation endows Vp with an algebra structure, but in general this 
algebra is not associative, nor  a Lie algebra the Jacobi identity will not 
be satisfied. However, when pairs (~, F )  are integrable into KVFs, they 
generate a Lie algebra Ip isomorphic to an isometry Lie algebra of  (M, g,b). 
Requesting that all pairs (~, F)p integrate into a KVF is of  course a restrictive 
condition on the space-time structure. More precisely, it can be shown that 

~, [[~:" ~::], ~] : 0 
,2,3 

(the Jacobi identity) is satisfied iff 

Mab q~ ~1 ~2(R,.~ 3FS = m , -Rm,~c 3F~b) + 2s "]Rm~,,b3F.~ = 0  (2) 
./1 ,2,3 

which is a severe restriction on the space-time curvature. This condition is 
satisfied in particular for space-times with constant curvature. In that case 
Ip is isomorphic to the de Sitter Lie algebra, i.e., the n(n - 1)/2-dimensional 
Lie algebra of  isometrics of  an n-manifold equipped with a metric of  
constant curvature, the signature of  the metric being the same as that of  
gab~P, and the sign of  the scalar curvature being the same as that of  R/p .  

This remark dear ly  underlines the role of  Rabcd in the deformation of  
the algebra structure, and consequently of  the Lie group structure of  those 
transformations (of a space-time manifold) which are expected to carry 
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conservation laws. The notion of  quasigroups of  transformations can cope 
with such situations. The idea is to describe the "deformat ion"  of  a (Lie) 
group product  via a set of  real parameters 0 - ( 0 ~ ) ,  ot = 1, 2 . . . .  , r. Thus, 
a set of  transformations (To) will form a continuous quasigroup of  transfor- 
mations if: 

1. There exists a unit element To, such that 

x ' - [To(x)]o=o=X Vxe (M,g~b)  

2. The modified composition law holds, 

T'o, ~ To(x)= T,~(o,o,:,)(x) 

implying that the deformation is controlled by qb and the parameters 0 ~. 
3. This results in a composition law 

~ ( q b ( 0 ,  0'; x), 0"; x) = ~ ( 0 ,  ~(0 ' ,  0"; To(x));x) 

4. Here the left and right units coincide: 

qb~(0, 0; x) = 0 ~ and qb~(0, 0'; x) -- 0 '~ 

5. The transformation inverse to To exists: 

X =- To l (x  ') 

These relations define the right action. The left action is defined similarly. 
The generators of  these infinitesimal transformations 

[Fa = ( a / a o ) [  To(x')]o=o, a / a x '  = R'~ alax' 
obey the following commutation relations: 

[ ro ,  rb]  = C~b(x)Fd 

These relations encompass the deformation of  the Lie-algebra structure 
within structure functions, i.e., point-dependent C,,b a. The resulting 
modification of  the Jacobi identity is expressed by 

c i c i c i e c Cda ,iRb-J- Cab Cde -[- CdaefbeC"b fbdCfae e :  Cab ,iR d "+ Cbd ,iRa + 0 

For an isometry Lie algebra, the above deformation of  the identity can be 
identified with M~b, thus displaying the role of  R,~bcd in the deformation of  
(Lie) groups into quasigroups. 

Below, we shall be concerned with compact Lie groups at infinity. Their 
deformation in nonasymptotic regions is to be expected. Since such groups 
are acting on fibers of  an asymptotic (principal) fiber bundle, we shall 
briefly outline the structure of  quasi (principal) fiber bundles. The difference 
here lies in the fact that the Lie algebra, instead of  being point-independent 
and therefore conveniently viewed as a space tangent at the identity of  the 
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Lie group (acting on the fiber), becomes dependent on the point x which 
projects each fiber on the base space. Let Lo denote the generators of this 
quasigroup of transformations, and (x, y) a point of the bundle, where x 
belongs to the base space and y to the fiber. These generators are tangent 
at the point y of the fiber Fx: 

La = L f  (x, y) eq/Oy b 

and their commutator is given by 

[ Lo, Lb] = CabmLm 

If, in particular, the structure coefficients Cob "~ are constants, the usual 
notion of Lie algebra, and principal fiber bundle, is recovered. 

Since the horizontal sections of the bundle must be Lie-derived by the 
action of the fiber (quasi) group, if T. defines such a section, 

ITs, Lb] = C,~bYTv 

where C~b v is a tensor field on the bundle, i.e., 

Furthermore, 

implies 

C,~b v = C~bY ( x, y) 

T~ = T~(x, y) O/Ox~+ T~(x, y) O/Oy a 

[To, Tr = C,~oA(x, y)Tx + C~~ y)Lo 

3. THE SU(2) GEOMETRY OF GENERAL RELATIVITY 

The space-times (M, gab) under consideration are globally hyperbolic 
and vacuum. Ee is a Cauchy slice labeled by 0, a time parameter over M, 
i.e., an affine parameter along a timelike vector field 0 a, so that we have 
O~ = --1. Thus, the vector field 0 a can be identified with 0/a0, Let N AA' 
denote the vector field normal to ~o, where superscript indices A and A' 
are SL(2, C) spinor indices on (M, gob). The SL(2, C) transformations 
preserving N ~ ,  will be identified with SU(2) attached to ~e. Consider 
objects of the form a AA' such that (denoting the Hermitian conjugate of 
by 4) 

~IAA'~. __~ AA' oIAA'NAA' = 0 

They clearly generate a real vector space, which is horizontal, i.e., orthogonal 
to NAA', and is consequently 3-dimensional on R. Such objects are isomor- 
phic to tangent vectors to ~0, the isomorphism being encompassed by 
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soldering forms o ' b A A  ' such that 

o-bA,o/AA' ~ O/b 

SU(2) soldering forms are consequently defined by 

A - -  m AA" ,~r 
O'aB ~ qa Or,,~ I 'r  B 

Unprimed S L ( 2 ,  C) spinors tangential to ~0 will be identified with SU(2) 
spinors on ~e- 

Objects such as tr~An on ( M ,  gab) can be viewed as vertical fields on a 
local quasibundle B where each fiber is isomorphic to Y~o (the base space 
being coordinatized by 0), valued in the SU(2) Lie algebra attached to E0- 

A covariant derivative can be introduced on SU(2) spinor fields on 
Eo, which is related to the action of V on SL(2, C) spinor fields on (M, gab). 

First a derivative operator is introduced on tensor fields tangential to E0: 

OaTb...cd...e i j k d e m...n = q a q b "  . q c q  . . . .  qnViT'j...k 

where qa b denotes the projection on E0- 
Similarly, a derivation operator is defined on SU(2) spinors on ~0: 

Furthermore, 

D a o l  A = q a b V  bOlA 

DEaDb]OtA =-- qma q~,V[rnVn]Ot A 

This relates the c u r v a t u r e  F a b A  B of D to the spinorial curvature 4RabAB: 

Fab A R = qam qb n 4 Rmn AB 

Using this setup, it has been shown (Ashtekar, 1988; Sen, 1982) that 
constraints attached to the embedding of~o into ( M ,  gab) and to the vacuum 
Einstein's equation can be formulated algebraically as follows: 

1 b.~'~ ~rc q a obclv  = tr( o" b F~b ) ~ tr bAB Fab ~ A 

" GbcN  b N c = tr( o'agb Fab ) =-- ~r~Antr bBC F~b cA 

where Gab denotes the Einstein tensor gab-�89 
As a result, constraint equations become vertical polynomials on the 

quasibundle B. This has interesting consequences in the asymptotic limit. 
Note that objects such a s  o r a a  B and FabA B are vertical forms on B, valued 
in the SU(2) Lie algebra. Isomorphisms between fibers of B can be denoted 
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by To, and are provided by the diffeomorphisms generated on (M, gab) by 
0". According to the previous section, the T~ s define a deformation of  the 
geometry attached to Eo as one goes from E0 to ~o, in the evolution which 
carries Cauchy slices into Cauchy slices. 

To summarize, the contents of  Einstein's equation is now described by 
a noncommutative SU(2) geometry defined on a quasibundle B. We shall 
see that in the asymptotic limit, such a geometry gives rise to a commutative 
geometry attached to a U(1) principal bundle on $2, with $2 being 
diffeomorphic to the boundary of  each Eo. We now consider the asymptotic 
limit of  the above spinor formulation of  vacuum constraints of  general 
relativity. We shall use the weak-field approximation, ignoring the self- 
interaction of  the field. To that issue, one must linearize the field off a 
"classical vacuum". Such a vacuum is provided by Minkowski space for 
which F~bA B vanishes. Therefore on every surface of  Minkowski space the 
gauge field AaA/~ defined by 

Daa~ = O.aM + AaMNCeN 

is pure gauge and can be set equal to zero without loss of generality. The 
linearization will be accomplished off flat 3-planes of  Minkowski space for 
which Oraa B a r e  fiat soldering forms and AaA B is chosen to vanish. 

A one-parameter curve of  phase space variables O'aAn(A), AaAB(A) is 
introduced near the point p(~ o_  ~ B = O) = p  = (Aaa  = 0 ,  O'aaa), and linearized, 
which leads to the fields 

d 
haA B =-- --~ OraAB ( ~ ) 

A=0 

d AaAn(}t) I CaAB ~ dA x = o  

Introducing 

h~b = h~ABtrb~ A =--- --tr(h~o'b) 

Cab = CaAB O'bB a ~ --tr( CaO'b ) 

and taking the derivative of  the polynomial constraint equations at fi, one 
obtains 

Oaha +[ C~, tra]=O 

tr( o'b Ot ~Cb l) = 0 

tr(o'"o "b O[afb] ) = 0 



Quasi-SU(2) Formulation of GR 1021 

(Recall that Dao't'A B =0, which induces the first of the above equations 
in the linearization process). Now, it has been shown (Ashtekar, 1988, 
pp. 124-125) that these linearized constraints in fact reduce to 

Oa hab = 0 Oa Cab = 0 

where h '~t" and C ab denote the traceless part of h at' and C at'. 
As a result, the true degrees of freedom of the asymptotic, weakly 

coupled gravitational field are represented by symmetric, transverse, trace- 
less tensor fields on Eo, which is characteristic of the spin-2 degrees of 
freedom. This result provides the starting point of the next section. 

4. THE COMMUTATIVE ASYMPTOTIC LIMIT 

In this section we take the viewpoint that spin-2 fields which emerge 
in the asymptotic regime from the weakly coupled gravitational field can 
give rise to global (topological) charges. These charges, in turn, generate a 
U(1) gauge field which is rather reminiscent of a Maxwellian gauge connec- 
tion. In this setup, the noncommutative SU(2)  geometry gives rise, at infinity, 
to a commutative U(1) geometry, which suggests that gravitational degrees 
of freedom, in the presence of suitable underlying space-time topology, 
could be appropriately described by a U(1) • SU(2)  gauge theory, a result 
which could shed light on the unification of the gravitational interaction 
with, e.g., the electromagnetic one, and which, in particular, makes sense 
in the presence of magnetic monopoles. 

Let us introduce, on the space-time manifold, and in the asymptotic 
region, a standard Newman Penrose null tetrad (l a, n ~, m~, ma) with 1. n = 
-1 and m . m = l .  

Let e~bc denote the canonical orientation on each Cauchy slice 2o. At 
each point of the space-time manifold, eabch Cald and eabcC r define horizon- 
tal 2-forms: f~,b and *f~b. Their introduction is suggested by the fact 
that spin 2-fields, in the asymptotic null regime, are encompassed by K ab 
and *K ~b, the respective pullbacks, at conformal null-infinity, of 

ainu bpq{l(.~--I rs[.-~ eamnEbpq~-lCmnpq and e e \~,~ e . . . . .  pq/ ,  where [l and C~b~d denote 
the conformal metric rescaling scalar field and the Weyl tensor. In the 
absence of gravitational radiation {vanishing of the Bondi News functions 

--~RSb) --gab]}, both K ab and *K ~b are multiples N a t ' - p u l l b a c k  o f [ q ~ ( R ~  1 
of nan b. 

We shall now focus on partial Cauchy slices Eo, restricting our attention 
to asymptotically null slices, i.e., such that in the asymptotic null regime, 
N AA" coincides with the null vector field n a. In such a setup, the 2-forms 
l)~b and *l~b can be pulled-back to conformal null-infinity I. The resulting 
2-forms are horizontal on the /-bundle, i.e., are the lift, to /, of closed 
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2-forms toab and *toab defined on the base space of the bundle--the 2-sphere 
of null generators of I. These closed 2-forms are consequently locally exact, 
which implies the existence of local potentials for Ftab and *f~b: ~ab = 
Dt~Ab I and *~ab = DE~*Abj. 

Due to the strong analogy between ~ab(:~ab) and the "electric" ("mag- 
netic") part of the spin 2-fields, it is natural to ask whether spin 2-fields 
can be the source of charges which could be analogous to the electric and 
magnetic charges in the case of a Maxwell field. This can indeed be 
accomplished, provided the base space of the I bundle is cohomologically 
nontrivial (noncontractible base space: an S 2 which can be viewed as the 
asymptotic limit of noncontractible 2-chains). In that case 

f s2 tOab dSab and ls2 *to~b dSab 

define (topological) global charges, which can be viewed as the global mass 
(magnetic charge) of the space-times under consideration. If such charges 
are nonvanishing, the /-bundle displays compact fibers [ U(1) topology]. 
On this bundle, potentials Ab and *A b define connection 1-forms, valued 
in the U(1) Lie group, and can be viewed as asymptotic Maxwellian 
connections which find their origin, in the nonasymptotic regime, in the 
canonically conjugate fields O'aA B and AaA 13. In the asymptotic decoupling 
from nonlinearities, SU(2) (noncommutative) gauge degrees of freedom 
are therefore transformed into U(1) (commutative) degrees of freedom. 
This can also be viewed as an expression of the dissipation of the general 
relativity constraints as one goes to the (characteristic) asymptotic null 
regime, with the conformal null boundary considered as a characteristic 
initial value surface. We are now ready to consider the nature of the 
gravitational interaction and its U(1)x SU(2) features. 

In the normal regime, space-time can be considered as an ~3 bundle 
over R (i.e., over a timelike curve). In the asymptotic null regime under 
consideration, timelike orbits are closed, and the structure is that of an R 3 
bundle over U(1). If we want to take into account the Lie groups which 
govern the behavior of the gravitational degrees of freedom, the Lie group 
structure is rather that of a local quasi-SU(2) bundle over U(1): for each 
point 0 in the U(1) group, one has an SU(2) group acting on the correspond- 
ing fiber ~o and related degrees of freedom. In this sense the group U(1) x 
SU(2) is governing the gravitational degrees of freedom in an asymptotic 
region. These degrees are encompassed in the SU(2) Lie-algebra valued 
(canonically-conjugate)l-forms o-~A B and AaA B and in the U(1) Lie-algebra 
valued (canonically-conjugate) 1-forms Ab and A'b. These forms describe 
the SU(2)x U(1) aspects of the gravitational interaction. Such a result 
could be useful for the unification of interactions, and sheds light on the 
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role of  topological charges such as magnetic charges (Kerner  et  al., 1989) 
as far as this issue is concerned. 
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